Marine Cloud Brightening Project: Geoengineering Experiment Briefing

» Download this briefing [pdf]

Location: Moss Landing, California, USA (Between Monterey and Santa Cruz)

Budget: $16.3 million

Summary:

The Marine Cloud Brightening Project (MCBP) aims to test the premise that spraying a fine mist of sea water into clouds can make them whiter, reflecting more sunlight back into space. The MCBP, a form of Solar Radiation Management (SRM) began with indoor development and testing of spray nozzles, and is moving toward a land-based field test in 2018, followed by ship-based tests and a larger-scale sea test later on.

Armand Neukermans discusses his plans with a Bay Area TV station.

After previous attempts to test “cloud brightening” as a geoengineering technique (e.g. the Silver Lining project) were cancelled after a public outcry, the project’s leaders have taken a smaller-scale, more public relations savvy approach.

Funding:

Initial support for development of hardware came from the Bill Gates-backed Fund for Innovative Climate and Energy Research (FICER). It is unclear where the funding for the project’s planned field tests is coming from.

Key dates:

Field tests were initially slated for as early as 2016, but have been delayed for lack of funding. The first land-based experimental use of cloud brightening hardware is now expected to take place in August 2018. The project hopes to move to ship-based tests within 2 years and then a large cloud brightening experiment 2-3 years after that.

Key players in MCBP:

Thomas Ackerman
Professor in Atmospheric Sciences, University of Washington

Robert Wood
Professor of Atmospheric Sciences, University of Washington

Philip J. Rasch
Pacific Northwest National Laboratory (PNNL)

Armand Neukermans
Former engineer at Xerox Labs, HP

Kelly Wanser
CEO of Luminus Networks

Stephen Salter
Emeritus Professor of Engineering Design, University of Edinburgh

John Latham
Professor emeritus at the University of Manchester (UK)

Regulatory status:

The UN Convention on Biodiversity has passed a moratorium on geoengineering deployment and experimentation (2010) that covers SRM, including experiments like this one. However, the US is not a party to the CBD. The US is a party to the London Convention and Protocol (on marine pollution) that has declared itself competent to rule on “marine geoengineering.” While spraying from land is not “marine.” future ship-based steps do clearly fall under the London Convention.

“We could… consider the climate system as a piano in which the spray regions are the keys, some black some white, on which a wide number of pleasant (or less unpleasant) tunes could be played if a pianist knew when and how hard to strike each key.” –Stephen Salter

The US is also a party to the UN Environmental Modification Convention (ENMOD) prohibits hostile use of environmental modification technology globally. Marine tests are also governed by the provisions of the UN Convention on the Law of the Sea (UNCLOS) and as tests move offshore, the current negotiations over activities affecting Biodiversity Beyond National Jurisdiction (BBNJ) become highly relevant.

Cloud brightening is on of an array of geoengineering techniques that aim to reflect sunlight back into space on a mass scale.

Under US Federal law (National Weather Modification Policy Act of 1976), any modification of the weather is required to be reported to the National Oceanic and Atmospheric Administration, and the results of research must be made public.

The proposed tests are taking place on Popeloutchom, the traditional territory of the Amah Mutsun Tribe, an Indigenous group dedicated to protecting its terestrial and aquatic ecosystems. Future large-scale marine cloud brightening trials could potentially affect the weather and airspace of several Indigenous communities in California’s central coast region.

For Indigenous Nations, territorial sovereignty spans land, underground and airspace as a whole. When it comes to legal precedent, one California-based lawyer has made a persuasive case that tribal governments’ sovereignty extends to the airspace over their lands under US law as well.

Possible impacts:

The effects of large-scale testing of MCB geoengineering techniques are unknown, but could affect rainfall in the immediate area, as well as creating unpredictable changes to regional weather patterns at a distance. For example, marine cloud brightening in the Pacific and elsewhere may lead to reduced rainfall in the Amazon basin.

Blocking sunlight on a scale on a scale big enough to modify global temperatures would have massive effects on weather patterns, which could lead to weaponization of geoengineering. Computer models suggest that Solar Radiation Management methods like cloud brightening could lead to drought in the Sahel region of Africa or South America. In the likely scenario that SRM creates winners and losers in terms of rainfall or other weather factors, the techniques would inevitably become a tool of geopolitics.

The area surrounding Moss Landing is also a major strawberry growing region, a form of agriculture that depends heavily on rainfall, and has been experiencing prolonged drought. If precipitation is altered by cloud brightening, this could negatively affect agriculture in the region. The proponents have said that the first experiments will not directly whiten clouds (only test out the hardware) but later experiments will do so.

So far, cloud brightening has struggled to find funding due to the controversial nature of its proposals, but a successful small-scale test could help to legitimize geoengineering research and open the door to larger-scale implementations and much more funding. If the tests proceed, and lead to full implementation, the implications could become planetary in scale. These experiments are the first step on a path to unilateral implementation of geoengineering, exploitation of “alternatives” to reducing greenhouse gas emissions by fossil fuel companies, and military uses of the technology.

The California coast (and the entire Pacific coastline down to Peru) are regarded as some of the most promising locations for SRM projects. If larger tests and deployment proceed, the North and South American Pacific coastal regions are the most likely locations.
The vision of the key players remains the creation of a planetary scale technology that can change the global temperature and be flexibly operated to cool and alter different regions. As MCB proponent and researcher Stephen Salter put it in a research paper, “We could… consider the climate system as a piano in which the spray regions are the keys, some black some white, on which a wide number of pleasant (or less unpleasant) tunes could be played if a pianist knew when and how hard to strike each key.”

Project details:

The first major open-air experiment was to be overseen by a US Silicon Valley entrepreneur Kelly Wanser, who established a company, Silver Lining Inc, later renamed The Silver Lining Project, in San Francisco. Leading Geoengineering researchers David Keith and Ken Caldeira steered some funding from the Bill Gates-backed FICER fund to project leader Armand Neukerman – the inventor of the earliest inkjet printers who worked at Xerox Labs and Hewlett Packard. Neukerman’s goal has been to develop the nozzle for ships that would fire saltwater as tiny particles into the clouds, at a rate of trillions per second. The nozzle must emit particles that are small enough – 0.2 to 0.3 micrometers – to rise and remain suspended in air. In 2010, Wanser announced a large-scale experiment involving 10 ships and 10,000 square kilometres of ocean that would take place in three or four years. But after media reported on the experiment, including the involvement of Gates in funding Neukerman’s work, all traces of the project and its scientific collaborators disappeared from the Projec’s website.

A few years later, the same proposals resurfaced as the Marine Cloud Brightening Project, still with Kelly Wanser as the executive director. In media coverage, they have focused on presenting themselves not as a commercial outfit but as a folksy collection of harmless, retired engineers tinkering in their labs instead of hitting the golf range – referring to themselves as the “Silver Linings.” Thomas Ackerman, a scientist at Washington University and one of the formulators of the Nuclear Winter theory, joined the project as a principal investigator in 2014.

Under the aegis of the University of Washington, their first land-based field experiment is slated to take place at Moss Landing, Monterey Bay, California. Tom Ackerman told a geoengineering conference in 2014 that they would set up nozzles on the shoreline and spray clouds as they roll in, observing if they were whitened, while sensors on the land would assess if this led to less incoming solar radiation.

More recent press reports include the test organisers stressing that the first experiments will not whiten any actual clouds, just test the hardware. They have already conducted wind-tunnel testing of a prototype nozzle in 2015 in the California’s Bay Area. Reports have also emerged that Kelly Wanser has been scouting to hire for a public relations whiz for the Monterey experiment – perhaps with the hope of not replicating the Silver Linings Project media fiasco. They would then move experimentation to sea, for a 2-3 year phase propelling droplets from a small ship. After that, the project would move to a larger at-sea cloud whitening test initially slated for the summer of 2017, but has since been delayed. The land-based experiment has been delayed for lack of funding but is expected to move ahead in August 2018.

Sources:

digitalcommons.law.ou.edu/cgi/viewcontent.cgi?article=1022

www.washington.edu/news/2017/07/25/could-spraying-particles-into-marine-clouds-help-cool-the-planet

www.mercurynews.com/2015/07/11/cloud-brightening-experiment-tests-tool-to-slow-climate-change/

Briefing prepared by ETC Group. etc@etcgroup.org

The Ice 911 Project: Geoengineering Experiment Briefing

» Download this briefing [pdf]

Locations: Near Barrow, Alaska; the Beaufort Gyre (an ocean current flowing past Nunavut and Alaska); and Fram Straight (between Greenland and Svalbard)

Budget: $97,630 (based on 2015 crowdfunder1, which raised $3,103 from 24 donors, but full implementation would cost millions)

Summary:

The Ice 911 project2 proposes to scatter millions of tiny glass bubbles over arctic ice, which would reflect sunlight, slowing the melting process in the summer months. The project’s proponents are pitching the project as a form of “soft geoengineering”, which they claim is less damaging and more reversible than other techniques. Their initial plan is to use their glass bubbles to prevent strategic areas of ice from melting, which could block larger ice sheets in the Arctic Ocean from floating south (where they would melt faster).

Experiments are deploying millions of tiny glass spcheres to reflect sunlight and delay melting of ice.

The effects of a large-scale geoengineering experiment like Ice 911 are difficult to determine. Just like other solar radiation management experiments, Ice 911 would develop infrastructure and technology that aim to change global weather patterns. Reflecting sunlight back into space on a massive scale in the Arctic could have unanticipated changes on precipitation, temperature and humidity all over the globe.
In addition to potentially catastrophic unanticipated effects, anticipated effects could be the most dangerous: the ability to change weather on other parts of the planet could become a powerful weapon wielded by governments or private actors.

Key Players:

Project leader Leslie Field-Barth is an electrical engineer and researcher who has worked for Chevron and various Silicon Valley firms, and currently runs a nanotechnology consultancy. She also teaches at Stanford.

Key dates:

According to the project, Ice 911 has already conducted experiments that covered 17,500 square metres of ice with their glass spheres in 2017 in Alaska.

In 2018, the Ice 911 project intends to cover .25 km of ice with its materials. In 2019, their stated plan is to scale that up by 20x on ice sheets in the Beaufort Gyre or Fram Strait.

Potential Impacts:

Ice 911’s goal is to spread millions of hollow glass beads the size of grains of sand over ice in order to reflect sunlight and slow the melting of ice, blocking the southward flow of larger bodies of ice and preventing those from melting as well. This could affect weather patterns locally and globally, habitat and animal migration in the Arctic, as well as other unanticipated effects,

While increasing the albedo of ice might seem more innocuous than, for example, spraying thousands of tonnes of sulphites into the stratosphere, it could have similar effects on weather patterns if implemented on a large enough scale to have an impact on the climate. Computer models show that “albedo enhancement” and “solar radiation management” (SRM) projects – especially coupled with a continued increase in atmospheric CO2 – could have profound effects on rainfall patterns in vulnerable regions like the Sahel and the Amazon basin, leading to droughts that could affect millions of people and threaten biodiversity.

To the extent that Ice 911 is succesful at changing global temperatures, it can become a tool of geopolitical power, with powerful nations claiming that they’re modifying global weather patterns for the good of the planet while they may be putting at risk the sources of food and water for many million peoples in Asia and Africa.

As such, the same concerns about weaponization that have been raised about other SRM projects apply. Once Ice 911 has been implemented on a large scale, data can be collected about effects on global weather patterns.

Reflecting sunlight back into space on a scale big enough to modify global temperatures would have massive effects on weather patterns, which could lead to weaponization of geoengineering. Computer models suggest that Solar Radiation Management methods like cloud brightening could lead to drought in the Sahel region of Africa or South America. In the likely scenario that SRM creates winners and losers in terms of rainfall or other weather factors, the techniques would inevitably become a tool of geopolitics.

To the extent that Ice 911 is succesful at changing global temperatures, it can become a tool of geopolitical power, with powerful nations claiming that they’re modifying global weather patterns for the good of the planet while they may be putting at risk the sources of food and water for many million peoples in Asia and Africa.

In the Arctic, rapid changes to the pattern of ice floes could impact animal migration as well as local weather patterns. Climate change is already having profound effects in the Arctic, but that doesn’t mean major changes to the circulation of ice and ocean currents would be an improvement. Without significant study, major unanticipated negative impacts could result, affecting conditions for hunting, fishing and trapping in nearby communities, animal habitat, plant growth, and changes to quality of life in settled areas. Indeed, it’s possible that major unanticipated effects could negate the “positive” effects anticipated by the authors of Ice 911.

Another source of unanticipated effects could be the glass bubbles themselves. Ice 911 compares its tiny spheres to sand and claims they are harmless to ingest, but there are key differences: hollow sphere may float, creating unanticipated changes in ocean temperature or photosynthesis of ocean life downcurrent; the highly reflective nature could affect animal behaviors, cause disorientation or be mistaken for food sources; and the spheres may have different effects on soil conditions, plant life or organisms that eat them, or further up in the food chain.

Regulatory Status:

The UN Convention on Biodiversity has passed a moratorium on ocean fertilization (2008) and on geoengineering (2010) that cover experiments like this. However, the US is not a party to the CBD. The UN Environmental Modification Convention (ENMOD) prohibits military use of weather modification technology globally.

The London Convention (the International Maritime Organization body that oversees dumping of wastes at sea) has also banned all ocean-based geongineering.

Under US Federal law (National Weather Modification Policy Act of 1976), any modification of the weather is required to be reported to the National Oceanic and Atmospheric Administration, and the results of research must be made public.

A polar bear on an ice floe in the Fram Straight. Covering ice with millions of tiny glass spheres could have many unanticipated effects on the local food chain, from sea life to whales, bears and Indigenous Inuit communities who depend on hunting. Photo: Creative Commons/Fruchtzwerg’s World

The area around Ukpeaġvik (also known as Barrow) where Ice 911’s 2017 experiment was staged, is owned by the Ukpeaġvik Iñupiat Corporation, whose shareholders are people of Iñupiat descent.
The Beaufort Gyre covers the northernmost part of the Arctic Ocean on the Canadian side, and comes into contact with the area of the Nunavut Land Claim. The Land Claim, signed in 1993, grants regional Inuit organization rights to water, and compensation if the “quality, quantity or flow” of water they depend on is affected by a “project or activity”.

The Fram Straight is located between autonomous Danish territory of Greenland and the Norwegian territory of Svalbard. Both countries are signatories to the UN Convention on Biodiversity.

Action required:

The Ice911 project has been developed under the radar of current applicable regulations, and no critical assessment of its impacts has been made. While the existence and immediate impacts of the project are concern enough, the cumulative and future impacts of a scaled up version require the immediate attention of regulatory bodies and civil society organizations.

Sources:

1. https://www.indiegogo.com/projects/ice911-preserve-arctic-ice-to-slow-climate-change#/

2. http://stormquell.org/

Briefing prepared by ETC Group. etc@etcgroup.org

Current Geogengineering Attempts Briefing: SCoPEx


Download PDF version: ETC-briefing-SCoPEx

Location:

World View Spaceport

Tucson, Arizona, USA

Key Players:

Frank Keutsch, David Keith, John Dykema, and Lizzie Burns, all Harvard Professors. Burns and Keith head the Harvard Solar Geoengineering Research Program.

Budget:

$20 million ($7m raised as of Oct. ‘17)

Summary:

The Stratospheric Controlled Perturbation Experiment (SCoPEx) is a planned experiment in a form of geoengineering known as Solar Radiation Management (SRM). SRM techniques aim to block or reflect sunlight before it reaches the earth’s atmosphere, which would hypothetically slow down  global temperature rise. SCoPEx aims to develop a form of SRM known as Stratospheric Aerosol Injection.

The SCoPEx project would spray water, finely-ground chalk and sulfur particles into the upper atmosphere from a high-altitude balloon and measure  how effectively the resulting clouds block sunlight, while also tracking any effects on the air in the upper atmosphere. While the environmental impacts are currently unknown, the political effects of the project, however, are the  most consequential: if the experiments are allowed to proceed, they would legitimize geoengineering and move us one step closer to a global sun-block and more geoengineering in the region.

Funding:

Funding comes from Harvard University and its Solar Geoengineering Research Program, which is funded by Bill Gates, several venture capitalists and hedge fund higher-ups, a former senior VP at Google, the Hewlett and Alfred P. Sloan foundations (among other philanthropic organizations), and a foreign policy research centre with military ties.

Key dates:

Project initiated: 2015

Research activities: 2017-2024

First field tests programmed: 2018

Regulatory status:

The UN Convention on Biodiversity has passed a moratorium on ocean fertilization (2008) and on  geoengineering (2010) that cover SRM and experiments like this. However, the US is not a party to the CBD. The UN Environmental Modification Convention (ENMOD) prohibits military use of weather modification technology globally.

Under US Federal law (National Weather Modification Policy Act of 1976), any modification of the weather is required to be reported to the National Oceanic and Atmospheric Administration, and the results of research must be made public.

The O’odham Nation, represented by a  handful of tribal governments, have lived in the area around the World View Spaceport for thousands of years. The reservations where the tribal governments exercise extra-constitutional sovereignty under US law cover a vast area of southern Arizona, with traditional territories extending into Mexico. For example, the Pascua Yaqui Tribe’s offices are a 20 minute drive from the Spaceport that will be the SCoPEx staging area.

While the sovereign rights of tribal governments over airspace is an emerging legal area, the Air Force and others have signed Memoranda of Understanding with the tribal governments about their use of O’odham airspace, indicating that government agencies are aware that they have some rights. One lawyer has made a persuasive case that tribal governments have sovereignty over what happens in the airspace over their lands.

Possible impacts:

The environmental effects of SCoPEx are mostly unknown. The project’s web site claims that the amounts released by the project will be “very small compared to other routine releases of material into the stratosphere by aircraft, rockets, or routine balloon flights.”

However, the political effects of the project are easier to predict. As governments continue to fall short of climate targets, David Keith and other geoengineers will be able to point to research findings to bolster the case for larger geoengineering experiments. However, these are not dispassionate scientists, but entrepreneurs backed by venture capitalists who stand to become fabulously wealthy if governments should opt to move forward with an SRM project in the future.

If SCoPEx moves forward, it will contribute to entrenching technology, capital and public relations power of geoengineering and divert resources away from real climate solutions.

Project details:

David Keith, among others, has proposed a suite of field experiments, some to test the effectiveness and risks of geoengineering and others to develop technologies for larger-scale deployment. The closest to execution is SCoPEx. This experiment would try to understand the microphysics of introducing particles into the stratosphere to better estimate the efficacy of different materials to reflect sunlight as part of an effort to develop SRM techniques. They first plan to spray water molecules into the stratosphere from a balloon 20km above the earth, to create a massive icy plume to be studied from the flight balloon. They then aim to replicate it with limestone or calcium carbonate, followed by sulphates.

David Keith’s Earlier Attempts

In 2012, news broke that David Keith and Harvard engineer James Anderson were planning the first outdoor experiment in solar geoengineering. This would have involved the release of particles into the atmosphere from a balloon flying 80,000 feet over Fort Sumner, New Mexico. Their stated aim was to measure how releasing sulfate would impact ozone chemistry, and to test ways to make the aerosols the appropriate size.

The announcement came soon after a controversial proposed field test of another SRM scheme – the British government-funded Stratospheric Particle Injection for Climate Engineering (SPICE) – was cancelled after a global outcry. Keith bemoaned its fate: “I wish they’d had a better process, because those opposed to any such experiments will see it as a victory and try to stop other experiments as well.”

After media revealed Keith’s own experiment, it too was cancelled, and Keith shifted energies to a new incarnation of the project. In early 2017, he helped launch Harvard’s Solar Geoengineering Research Program, backed by several million in funding by billionaires and private foundations.

Now, Keith is covering his bases politically: he claims the amounts of particles released will be small, and  in an attempt to win support among civil society, the project says it will have an independent advisory process for the experiments. This is in keeping with what constitutes a problem with all small-scale experiments like this: the slow and careful accumulation of mainstream legitimacy for large-scale experiments in solar geoengineering in the media, scientific bodies, and institutions of governance, both regionally and globally—ultimately leading toward full deployment.

SCoPEx Funders include:

William and Flora Hewlett Foundation; The Open Philanthropy Project; Pritzker Innovation Fund; The Alfred P. Sloan Foundation; VoLo Foundation; The Weatherhead Center for International Affairs; G. Leonard Baker, Jr.; Alan Eustace; Ross Garon; Bill Gates;  John Rapaport; Michael Smith; Bill Trenchard.

–November 2017 , info@etcgroup.org

Hydroxyl and methane? SRM proponents fail to consider key aspect of atmospheric chemistry

By Dr. Rachel Smolker

Hydroxyl (OH) is a simple, very short lived but “radical” marriage of one hydrogen and one oxygen molecule. Being “radical” means that it reacts very readily with other chemicals, being an important agent of change. Hydroxyl radicals are referred to as an atmospheric “detergent” because they play a key role in oxidizing, and thereby decomposing various air pollutants, including carbon monoxide, sulphur dioxide, and methane. OH chemistry is closely associated with ozone dynamics – since most OH is formed from UV mediated breakdown of ozone.

A study just published in July 2017 looked at the impact of stratospheric aerosol injection of sulfate particles (SAI), a proposed “solar radiation management” (SRM) approach to geoengineering, on methane. OH converts methane into water and CO2, over time. The longevity, and in turn the concentration of methane in the atmosphere therefore depends in large part on the concentration of OH.[1]

What they found (using models) is that sulfate aerosol injection would have several effects – on planetary albedo, on UV scattering and on circulation of air and sulfate particles between layers of the atmosphere. The two models used by the researchers suggest that those impacts, taken together these would result in an increased longevity of methane by as much as 16% – which would mean 16%more methane in the atmosphere at any one time. This would greatly exacerbate (“force”) warming.[2]

The idea of using SAI has been bandied about for over a decade. David Keith, one of the most avid proponents recently opened a laboratory at Harvard University, with grants from the Gates Foundation and others. This is one of several new academic institutes that have taken up research on geoengineering with grant moneys flowing. The Royal Society and National Academies, among others have written assessments, and reports and debates are increasingly, and disturbingly, more commonplace. Keith and colleagues have announced plans for an open-air experiment in the southwestern USA in 2018.

So how is it, that all of these academics, and all the king’s men have not taken into consideration the impacts of SAI on OH breakdown of methane, until now? My long-time colleague and codirector of Biofuelwatch, Almuth Ernsting, has no Ph.D. in, or formal training in atmospheric chemistry. But she has long been wondering about that possibility. She first learned the importance of hydroxyl in the atmosphere from reading a 2006 book by Fred Pearce, which included a chapter on hydroxyl (“The Last Generation”). Later, in 2011, while participating in a Convention on Biological Diversity civil society meeting on climate geoengineering, attended by various “experts” on geoengineering, Almuth raised the question about how injection of sulfate aerosols might impact OH behavior, but no answer was offered.

The fact that the vitally important question whether SAI might impact on the lifespan and thus the concentration of methane in the atmosphere was never publicly asked or acknowledged by geoengineering advocates until now, is deeply troubling. OH is not something totally new. It has long been known as a factor in atmospheric chemistry, discussed in the IPCC climate science reports for over a decade. The potential for SAI to cause ozone depletion, (which is mediated by OH), was identified, but nothing appears to have ever been written about the potential effects on methane.

Surely, anyone seriously contemplating the injection of massive quantities of sulfur into the stratosphere SHOULD have taken careful consideration of the impact that doing so would have on all of the OH–mediated chemical reactions, including methane.

This apparent oversight could be viewed as a textbook example of how a severely narrow, reductionist engineering world view fails us. The complex interdependence of multiple, ever-changing, physical and chemical factors that results in our life-supporting atmosphere is not amenable to understanding in linear, binary, widget-tweaking terms. We can at least hope that it was in fact an “oversight” and not deliberate shrouding of the issue: potentially the impacts on methane longevity could entirely offset any purported cooling from SAI – or worse. One methane molecule is estimated to cause 28 times as much warming over a century as one CO2 molecule. This new “risk” thus utterly undermines proclamations (grants, careers and all) of its’ effectiveness as a means of cooling.

Had SAI already been deployed, we might now be learning the hard way via experience about OH/methane interactions. Or even worse, even if the effects were exactly as predicted by the models used in the recent study, there would be so many other possible reasons for rising methane levels that it could still be difficult to prove the link to SAI. Fortunately, with a de-facto moratorium on geoengineering, (via the Convention on Biological Diversity), widespread deep public skepticism towards climate geoengineering in general, and serious concerns about governance, we have not gone down that road yet. Many are banging the geoengineering drums with increasing persistence however, calling for “desperate measures” as the climate heats up.

This study is an important wake up call. Several prior studies indicated that SAI would be problematic for various reasons – from regional impacts on rainfall and weather, to impacts on ozone. This latest study provides a compelling reason to steer entirely clear of SRM. Virtually all climate geoengineering technofixes that are under consideration not only distract from the urgency of immediate emissions reductions – but also it is clear that they simply won’t work! In fact, deploying any of the proposed geoengineering techniques is likely to only make matters worse. As we race headlong into climate chaos and face calls for desperate measures, this would be a key point to keep in mind!

[1] OH also plays a key role in sulfur chemistry in the atmosphere. See for example: http://www.nature.com/articles/284330a0

[2] Visioni, D., Pitari, G., Aquila, V., Times, S., Cionni, I., Genova, G. and Mancini, E. 2017. Sulfate goengineering impact on methane transport and longevity: results from the Geoengineering Model Intercomparison Project.(GeoMIP). Atmos. Chem. Phys., 17: 11209-11226

 

Governance for a ban on geoengineering

[Originally posted by Carnegie Climate Geoengineering Governance Initiative.]

by Lili Fuhr

All geoengineering approaches are by definition large-scale, intentional, and high-risk. Some have well-known negative impacts, threatening the achievement of the Sustainable Development Goals and undermining fundamental human rights (for example Bio-Energy with Carbon Capture and Storage). Others have great uncertainties when it comes to their potential impacts, that will never be fully known before actual deployment (mostly Solar Radiation Management).

There is a very important principle in international and national environmental law when it comes to dealing with uncertainties and risks – the precautionary principle. Based on this principle, the outdoor testing and deployment of SRM technologies, because of their potential to weaken human rights, democracy, and international peace, should be banned outright. This ban should be overseen by a robust and accountable multilateral global governance mechanism.

Other technologies that require great scrutiny are Carbon Dioxide Removal (CDR) projects that threaten indigenous lands, food security, and water availability. Such large-scale technological schemes must be assessed diligently before setting up proper regulations, to ensure that climate-change solutions do not adversely affect sustainable development or human rights. Any intentional large-scale deployment of transboundary nature (and with potential transboundary risks and harms) needs to be assessed by an agreed UN multilateral mechanism, taking into account the rights and interests of all potentially impacted communities and future generations. Most CDR schemes currently proposed would very likely fail such a rigorous assessment.

A ban requires governance

So why should I be interested in a debate on governance of a set of technologies that I would like to see banned? The answer is clear: a ban requires governance to ensure it is being implemented and enforced. And furthermore: governance of geoengineering is not just about the rules, procedures and institutions controlling research and potential deployment, but it is also about the process and discourse leading up to it. Unfortunately, current debates about climate engineering are undemocratic and dominated by technocratic worldviews, natural science and engineering perspectives, and vested interests in the fossil-fuel industries. Developing countries, indigenous peoples, and local communities must be given a prominent voice, so that all risks can be fully considered before any geoengineering technology is tested or implemented.

The good news is that a debate of governance of geoengineering does not take place in a legal or political vacuum. There are a number of important decisions to build upon. In 2010, 193 governments – parties to the United Nations’ Convention on Biological Diversity (CBD) – agreed to a de facto international moratorium on all climate-related geoengineering. More thematically focused, the London Convention/London Protocol (LP) to prevent marine pollution adopted a decision in 2013 to prohibit marine geoengineering (except for legitimate scientific research). The decision (adopted but waiting to enter into force) applies to the technologies that are included in an annex, which for now only lists ocean fertilization, as other techniques have not been thoroughly considered by the LP yet.

Beyond climate change

But geoengineering is about much more than climate change. Many geoengineering techniques have latent military purposes and their deployment could violate the UN Environmental Modification Treaty (ENMOD), which prohibits the hostile use of environmental modification. The Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques (ENMOD) has been in force since 1978 and has been ratified by 77 states. It prohibits the use of environmental modification and commits parties “not to engage in military or any other hostile use of environmental modification techniques having widespread, long-lasting or severe effects as the means of destruction, damage or injury to any other State Party” (Article I). Article II defines environmental modification techniques: “any technique for changing – through the deliberate manipulation of natural processes – the dynamics, composition or structure of the Earth, including its biota, lithosphere, hydrosphere and atmosphere, or of outer space.” This definition encompasses many geoengineering technologies currently under active research and development.

Today, with powerful advocates generating so much pressure to bring geoengineering technologies out of the lab, soft bans with little enforcement mechanisms like the CBD decision are no longer sufficient. The world urgently needs an honest debate on the research, deployment, and governance of these technologies. The CBD and the London Protocol are essential starting points for these governance discussions, but these are certainly not enough.

Using the precautionary principle

In our civil society briefing on the Governance of Geoengineering “Riding the Geostorm” – that the Heinrich Böll Foundation published jointly with ETC Group – we highlight some key criteria for a legitimate discussion on geoengineering governance. In our view it should be based on the precautionary principle and not be confined to climate-related issues, as the consequences are more far-reaching than the climate, including weaponization, international equity, intergenerational justice, impacts on other ecosystems, such as biodiversity and oceans, impact on local and national economies dependent on those, indigenous and peasant rights.

Any debate on geoengineering, in our view, needs to be entwined with and informed by a rigorous discussion on ecologically sustainable and socially just alternatives to confront climate change and its causes, that shows that geoengineering is not a physical necessity or technical inevitability but a question of political choices.

Multilateral, participatory discussions 

Discussions on the governance of geoengineering need to be multilateral and participatory, transparent and accountable. They need to allow for the full participation of civil society, social movements and indigenous peoples. All discussions must be free from corporate influence, including through philanthro-capitalists, so that private interests cannot use their power to determine favourable outcomes or to promote schemes that serve their interests. This also means that initiatives like the C2G2 need to have obligatory, public and non-ambiguous conflict of interest policies in place, that prevent researchers with commercial interests in geoengineering to act as “independent” expertise.

An agreed global multilateral governance mechanism must strictly precede any kind of outdoor experimentation or deployment. And a ban on geoengineering testing and deployment is a governance option that I would certainly like to keep on the table.

The International Campaign to Abolish Nuclear Weapons (ICAN), a long-standing partner of the Heinrich Böll Foundation, received the Nobel Peace Prize this year “for its work to draw attention to the catastrophic humanitarian consequences of any use of nuclear weapons and for its ground-breaking efforts to achieve a treaty-based prohibition of such weapons”. Maybe this shows that despite a rather negative outlook on the future of multilateralism today, there’s an appetite to take bold and clear action when it comes to enclosing high-risk technologies.

Lily Fuhr is Department Head, Ecology & Sustainable Development, Heinrich Böll Foundation.

Riding the geostorm: Is it possible to govern geoengineering?

The prospect of controlling global temperatures raises serious questions of power and justice: Who gets to control the Earth’s thermostat and adjust the climate for their own interests? Who will make the decision to deploy if such drastic measures are considered technically feasible, and whose interests will be left out? This briefing from civil society on Geoengineering Governance was was produced by ETC Group and the Heinrich Böll Foundation.

New briefing: Why are Solar Radiation Management Experiments a Bad Idea?

by ETC Group.

A new briefing from ETC Group outlines the ethical, political and environmental arguments against solar radiation management (SRM), and explains why even SRM experiments are a bad idea. The backgrounder was released in late March 2017 after Harvard University announced they are planning open-air SRM experiments  in Arizona in 2018. Read the briefing and related materials at: http://www.etcgroup.org/content/why-srm-experiments-are-bad-idea

ETC Group also issued a news release and supporting materials explaining how the new US administration could “inflate geoengineers’ balloon” and create favourable circumstances for geoengineering experiments now and in the future.

The New Cold War: The Political Problem of Geoengineering

by Caroline Jones (Brown Political Review)

For a long time, weather control was merely the stuff of Greek myths, super powers, or science fiction novels. But experimentation with altering weather and climate in the academic realm has been explored for nearly two hundred years,, with increasingly — and some might say frighteningly — reactive results. Beyond scholarly curiosity about the human ability to manipulate our immediate environment, climate control has more recently been considered as a possible strategy to combat the effects of global climate change. The methods of large-scale manipulation of natural climate processes, more commonly known as geoengineering, are seen by some as a catch-all solution for what now seems to be an irreversible progression towards potentially catastrophic changes in the global climate. While a technological fix is tempting, the political complexities and potential ramifications, political and environmental, behind implementing such an unpredictable global strategy complicate, if not completely eliminate, the possibility of employing geoengineering technologies.

The 1960’s saw the introduction of climate control into military and political decision making in the United States, with the Science Advisory Committee to President Johnson raising the issue of “deliberately bringing about countervailing climatic changes,” such as “raising the albedo, or reflectivity, of the Earth.” Only a few years later, the United States participated in the first known example of weather manipulation as part of military strategy when the U.S. Air Force carried out a cloud-seeding mission (adding particles to clouds to increase or instigate precipitation) over Vietnam, Laos, and Cambodia in order to hinder the progress of North Vietnamese troops. This action prompted the United Nations to approve the Environmental Modification Convention, banning the manipulation of weather patterns for hostile or military purposes. In decades since, as public and scientific knowledge about the near-inevitability of climate change has expanded, proposals for large-scale action have come from Nobel Laureates and Pentagon officials alike. Potential strategies include the injection of nearly 1 million tons of sulfate aerosols into the atmosphere in order to dull the rays of the sun, ‘fertilizing’ the ocean with carbon-absorbing algal blooms, and establishing a massive field of reflective mirrors in orbit around earth to reflect the sun’s light away from the planet’s surface. Today, some scientists see geoengineering as our only way out of a now-irreversible movement towards potentially dangerous after-effects of global climate change. Those in this school of thought also tend to support more minor and locally controlled methods, such as using cloud seeding to mitigate drought in a certain area (though such experiments in the past have had limited success).The movement towards geoengineering, unfortunately, suffers from techno-centric tunnel vision with regards to its political challenges, and this will ultimately be its downfall. Geo-technologies are specifically designed to target one aspect of climate change (reducing earth’s temperature) but neglect to account for the interconnectedness of the global environment. The environmental ripple effect of implementing these strategies is unpredictable; even small-scale ecosystems are far too complex to be accurately modeled, let alone the entire global climate. If the impracticality and potential environmental hazards posed by geoengineering weren’t enough to dissuade us, we must take another step backward and question the legislative process that goes into implementing strategies that, by definition, impact the entire world: which country’s hand gets to rest on the global thermostat?

One of many complicating factors in the struggle to regulate and combat the effects of global climate change is the fact that some countries actually stand to benefit from the shifting temperatures. Many countries far north of the equator are beginning to see previously desolate, frozen territories slowly thaw into arable land with the potential for mineral and oil extraction. Russia, which has expectantly laid claim to Arctic territories in the event that they melt (thus increasing access to underwater oil reserves), has also articulated the ways in which their agricultural society could benefit from climate change. Though still unlikely, attempts by the United States to turn the global temperature back down have the potential to re-ignite conflict between the United States and Russia, bringing a brand new meaning to the idea of a “cold” war.This disconnect about which countries benefit from climate change naturally ties into the debate about who stands to directly benefit from climate control strategies. The vast majority of the scientific community working on Geoengineering technologies consists of researchers from Western Europe and North America. The homogeneity of this “geoclique”, while not intentionally discriminatory, perpetuates the disenfranchisement of many international communities in the ongoing conversation about climate management. Not only is a majority of the world’s population not representatively engaged in the debate about an issue that unquestionably concerns the entire world, but also the structure of that debate perpetuates existing international tensions about mitigating and addressing the issues presented by climate change. In addition to having different economic and political priorities, communities around the world have a wide variety of ethical and moral values, some of which directly conflict with the idea of climate manipulation as a whole. Neglecting to include these absent voices from the beginning, particularly the voices of indigenous communities and less politically powerful nations in the global south, perpetuates environmental/climate racism (the marginalization or direct endangerment of minority communities with regards to environmental hazards/issues) on a global scale.

There’s no denying that geoengineering is an exciting frontier in climate science – humanity’s exercise of ultimate control over the power of nature via space mirrors or aerosol artillery is an enticing taste of the futuristic possibilities ahead. It also provides a comforting prospect to believe in, especially when bombarded with the catastrophic imagery of intensifying natural disasters, heat waves, and sea level rise. But the sweeping solutions that geoengineering promises are unpredictable and ungovernable; their development and implementation are politically dangerous and their rippling aftereffects could cause more environmental upheaval than the climate change they were designed to mitigate. Our international political community is not nearly united enough to make such a universal step towards techno-centrism, nor is it sufficiently representative of the global population that will inevitably be effected. Geoengineering is not our climate change safety net — we are far more likely to get tangled in the webbing than we are to be saved.

If mankind is forced to take drastic action to stop global violence or warming, things are gonna get ugly

by John Knefel (Inverse)

Erratic weather. Draughts. Hurricanes. ISIS.

It seems like one of these things doesn’t belong. And while it’s true that the persistence of terrorist groups in the Middle East is a phenomenon separate from global warming, two new reports and basic logic argue that the U.S. Government needs to start looking at climate change as inextricably linked to U.S. and global security.

Taken together, the reports sound an alarm that is often ignored when politicians in the U.S. talk about their government’s environmental responsibilities. Republicans, for their part, dismiss human-made climate change while often trumpeting the importance of military preparedness. When Democrats talk about global warming, they prefer a narrative that couples economics with sea levels — a green economy will create jobs while slowing the rise of oceans. Both parties tend to ignore the ways in which climate change has led to conflict and the ways in which continued climate change will escalate existing conflicts. And few institutions — political, governmental, civilian, scientific, academic, etc. — have truly grappled with the potential ramifications of what could happen if mankind found itself forced to take drastic measures to stop global conflict and warming at one time.

Syria stands out as a modern example of how a complex matrix of factors, including a historic drought, can create political instability. Does President Bashar al-Assad have impressive popularity ratings in a world without global warming? Probably not, but the civil war in Syria is at least partially about basic resources and the lack thereof has compounded the refugee crisis.

Experts both inside and outside government are arguing that conflicts like the one in Syria, where a corrupt government is strained by extreme weather and volatile food and energy markets — could become more common. And we know conflicts rarely stop at borders or even the water’s edge. Will the coming decade see a vicious cycle emerge as humanitarian disasters become hot conflicts leading to further displacement? The smart money and the cynical money are in the same place.

The first report is from the liberal think tank the Center for American Progress, and looks specifically at resource scarcity. The authors of Food Security and Climate Change: New Frontiers in International Security conclude that the international community must significantly change the way it responds to food shortages and climate-driven migration. Failure to adapt to the emerging crises could worsen suffering in already hard-hit areas – sub-Saharan Africa and the Middle East, among other places – and outpace “the capacity of developed countries and international aid organizations to respond.”

The CAP report details a hypothetical food shortage scenario that the authors and leading policymakers and experts from around the world gamed out last fall. Set in the decade from 2020-2030, participants were tasked with handling a model in which “pressure on the global food system was mounting.”

“The food crisis scenario felt all too realistic,” the authors write. “It was similar to the challenges the world faced in the past decade, particularly in 2011: Staple prices dramatically increased after a series of weather events around the world reduced harvests in a number of key food-producing countries.” They go on to state that many of the participants were unversed in the constraints and requirements of their peers – farmers didn’t understand policymakers, who didn’t understand security experts. The result was an outcome where natural allies were working at cross purposes because of a lack of familiarity with one another’s jobs.

Crucially, this is a problem that goes both ways, sometimes in a feedback loop. “Food insecurity and violence can contribute to instability and violence, just as surely as instability and violence can lead to food insecurity.” As global temperatures continue to rise to levels that even shock climate scientists, institutions like the United Nations and the World Bank, the authors write, need to adapt to the new international crisis. For now, the UN and international law doesn’t recognize climate-related reasons for claiming refugee status.

The other report, Climate Change and US National Security, from The Atlantic Council, argues that U.S. government officials should adopt the phrase “climate security” to convey the overlapping nature of the threats. “Climate security has become a useful concept in a five-decades-old field tying environmental change to national and global security,” the authors write. “The question going forward is whether climate security will remain restricted to discussions within academia, civil society, and a few dedicated places within the U.S. government, or if it will acquire a more pivotal role in the formulation of U.S. national security strategy.”

The Atlantic Council report lays out the two approaches a country can take to combating climate change: mitigation and adaptation. Mitigation strategies attempt to lessen the problem, “basically, switching from a high-carbon to a low- carbon economy, and negotiating global agreements to accomplish the same.” Adaptation deals are made with responding to the consequences of a warmer planet, “to increase American society’s resilience in the face of that threat.

Unfortunately, the authors conclude, mitigation is largely relegated to only a few federal agencies with relatively little power, while the rest of the government focuses on adaptation – to the extent the U.S. focuses on climate change at all.

The Atlantic Council report concludes that unless the political context around mitigation changes — essentially Republicans have to begin to acknowledge the existence of human-made global warming — the U.S. government will at best be on a defensive footing, hoping that adaptation can hold off the most severe consequence of rising sea levels and increasing temperatures. If that happens and climate change becomes more and more catastrophic, they write, it’s possible “that some entity or individual — the U.S. government, another state, a billionaire, an entrepreneur — will attempt to geoengineer the planet long before the zero-carbon economy arrives.” They define “geoengineering” as “a scheme either to reduce the amount of sunlight (thus, heat) reaching the Earth’s surface, or to pull carbon dioxide from the atmosphere and sequester it in the Earth’s crust.”

The promise of geoengineering, as a cheap fix to an insurmountable problem, would become “irresistible, but the biggest risk is that the consequences could be both extreme and negative, leading the world down an unknown and dangerous path that might prove even worse than the effects of climate change itself.”

It’s hard to see how to feel good about a future in which we’re forced to fundamentally alter the planet to save it from burning and drowning – but warning about that nightmare scenario might be what it takes to kick the world’s leaders into high gear.

Using ship wakes to fight climate change? Time to anchor climate research to common sense

Jenni Konrad CC BY-NC 2.0An article published in January by the Journal of Geophysical Research and covered briefly in Nature describes how brightening and extending the lives of ship wakes can be used to alter the albedo of the oceans, and cool global temperatures. It adds ship wakes to a growing list of Solar Radiation Management techniques.

The theory is based on extending the lives of the microbubbles generated by ship movements from the minutes that they currently last, to days. These bubbles are created by “surfactants”, and their lifetimes in sea water “are strongly dependent on the amount of natural surfactant (surface-active carbohydrates, proteins, and lipids often derived from phytoplankton) and amphiphilic nanoparticles which help stabilize microbubbles.”

Therefore, the study suggests, to achieve global cooling on the scale and scope required, extra surfactants would need to be added to ship wakes, and additional shipping movements would need to account for the fact that there are far more wakes in the Northern Hemisphere, than the Southern.

The most obvious flaw is that the study doesn’t mention what these surfactants could be, or what their effect on the oceans would be. The “assessment of the amount or type of surfactant required is beyond the scope of this study, as is the assessment of undesirable side effects from the addition of surfactant.” However, this is tempered by the statement that the surfactants would need to be benign, and not harmful ecologically as, otherwise, “surfactants may be microbially and photochemically processed with undesirable impacts on ecosystems”.

Granted, this study was just a modelling exercise, playing with changes to sea surface albedo. On the face of it, perhaps it’s a good idea to look into making seemingly small tweaks to already global phenomena, to counteract global temperature rises. The fundamental problem though is that ideas such as this one are being taken increasingly seriously by policy-makers, and encouraged by corporations wanting to maintain the status quo.

This kind of study could well inform policy decisions, despite the glaring omissions from it. For example, without knowing what the surfactants would be, or what volumes would be required, or indeed what the impacts of substantially increasing shipping in the southern hemisphere would be, studies like this should not be taken seriously. Natural surfactants may be derived from phytoplankton and marine processes, but they can also be highly toxic, and indeed carbon intensive in their production. Likewise, the contribution of shipping to global anthropogenic CO2 emissions is close to becoming the largest single source after cars, housing, agriculture and industry.

The BP oil disaster in the Gulf of Mexico is a case in point. The oil dispersant BP used was a mixture of two surfactants. BP of course claimed that the chemicals were safe, and the EPA didn’t even require any safety testing prior to its use. A record 1.8 million gallons were used to disperse the oil, and it potentially killed more sea life than the oil would have destroyed by itself. This is an example of what “technofixes” of this kind could mean in practice, especially if put in the hands of irresponsible companies, or unscrupulous government agencies.