Bio-Energy with Carbon Capture and Storage (BECCS)

Overview

BECCS describes capturing CO2 from bioenergy applications and sequestering it through either Carbon Capture and Storage or Carbon Capture, Use and Storage. BECCS is considered “carbon negative” because bioenergy is wrongly considered “carbon neutral” based on the idea that plants will regrow to fix the carbon that has been emitted.

BECCS has taken centre stage as a climate “mitigation” technique and as a “negative emissions” technology.1  Virtually all of the likely 2°C scenarios considered by the IPCC in their most recent assessment report assume that BECCS will be technically and economically viable and successfully scaled up, which has not been proven.2 Across the scenarios considered by the IPCC, an average of 12 gigatons of removal annually through BECCS after 2050 is required, equivalent to a quarter of current global emissions.3 However, it seems highly likely that BECCS may never be technically and economically viable.4

Actors involved

As of 2018, there is only one BECCS project in the world: ADM’s Decatur corn ethanol refinery in the USA.5 CO2 is captured from the fermentation process and injected underground. This has been essentially a “proof of concept” project, funded by the Department of Energy (US$ 141 million6), which claims that it provides a “carbon negative footprint.” In reality, the refinery is powered by fossil fuels and corn is an energy-intensive crop, giving it a net carbon positive footprint.7

There are at least four more ethanol plants in North America where captured CO2 is used for Enhanced Oil Recovery (see CCS fact sheet8). There are also plans for very small facilities in Brazil, Saudi Arabia, the Netherlands and Norway.9 For all the emphasis on BECCS from industry and policy-makers, it is clear that the technology is not keeping up with expectations.

Biodiversity-destroying eucalyptus plantations would provide much of the raw material for BECCS. (Allysse Riordan/Flickr)

Impacts

A large body of peer-reviewed literature indicates that many bioenergy processes result in even more CO2 emissions than burning the fossil fuels they are meant to replace – it is certainly not carbon neutral.10 This is due to emissions from (but not limited to): converting land into energy crop production which sometimes results in the displacement of food production, biodiverse ecosystems such as forests, or other land uses (indirect land use change); the degradation and overharvesting of forests; and emissions from soil disturbance, harvesting and transport.

Because BECCS needs fast-growing energy crops, its deployment could also require more than doubling fertilizer inputs, requiring as much as 75% of global annual nitrogen production. This would seriously exacerbate environmental degradation and emissions associated with fertilizers and agrochemicals, which currently cause large-scale anoxia in oceans and eutrophication of streams and rivers, for example.11

The BECCS theory: capture carbon with trees; burn trees for energy; capture carbon at the smokestack; bury carbon underground.

Capturing CO2 from bioenergy processes would be even more technically challenging and energy intensive than capturing CO2 from coal plants, which has been attempted at great cost and with little success. A unit of electricity generated in a dedicated biomass power plant results in up to 50% more CO2 emitted than if generated from coal,12 meaning that yet more energy must be dedicated to the carbon capture process itself. Further still, there serious doubts that geological storage of CO2, in old oil and gas reservoirs, or deep saline aquifers, will be effective and reliable (see CCS fact sheet13).

A study looking at what would be required to sequester 1 gigaton of carbon annually using BECCS, equivalent to around a fiftieth of global annual emissions, concluded that between 218 and 990 million hectares of land would be needed to grow the biomass (this is 14-65 times as much land as the US uses to grow corn for ethanol).14 More recent studies calculate that the biomass required for BECCS would take up between 25 and 80% of current global cropland.15

Land conversion on such a scale would result in severe competition with food production, depletion of freshwater resources, vastly increased demand for fertilizer and agrochemicals, and loss of biodiversity, among other problems.16 Indeed, one study concluded that large-scale deployment of BECCS could result in a greater loss of terrestrial species than temperature increases of 2.8°C.17

Scaling up bioenergy to the extent envisaged would have devastating impacts on livelihoods and compete directly with food production. Severe human rights abuses and land-rights conflicts are already being caused by bioenergy globally, for example for biofuel production and tree plantations for wood pellet production. Indeed, industrial monoculture tree plantations would likely provide much of the raw material for BECCS.18 At such a scale, current harm to communities and impacts from land-grabbing would be dwarfed by BECCS.

One recent assessment projected that large-scale BECCS deployment could result in sweeping food price rises across Africa, Latin America, and Asia, threatening food security for many of the world’s most vulnerable. Another recent study indicated that even modest increases in bioenergy development could increase the number of malnourished children in sub-Saharan Africa by 3 million.19

Reality check

BECCS is currently purely aspirational and, given the technical challenges, it is unlikely to ever be scaled up significantly. However, fantasy technologies like BECCS allow polluters to keep using fossil fuels through the false hope that “negative emissions” can remove carbon from the atmosphere in the future, delaying urgent action on climate change further. This is likely to be the most dangerous impact of BECCS.

Further reading

Biofuelwatch and Heinrich Böll Foundation, “Summary BECCS report: Last ditch climate option or wishful thinking?” http://www.biofuelwatch.org.uk/2016/beccs-report-hbf/

Global Forest Coalition, “The risks of large-scale biosequestration in the context of Carbon Dioxide Removal,” http://globalforestcoalition.org/risks-of-large-scale-biosequestration/

ETC Group and Heinrich Böll Foundation, “Geoengineering Map.” map.geoengineeringmonitor.org

The Big Bad Fix: The Case Against Climate Geoengineering, http://etcgroup.org/content/big-bad-fix

Sources

1. The Royal Society, “Geoengineering the climate: science, governance and uncertainty,” 2009

2. Kevin Anderson and Glen Peters, “The trouble with negative emissions,” Science, Vol. 354, Issue 630, 2016 pp. 182-183

3. Christopher Field and Katherine Mach, “Rightsizing carbon dioxide removal,” Science, Vol. 356, 2017, pp706–707

4. Almuth Ernsting and Oliver Munnion, “Last-ditch climate option or wishful thinking? Bioenergy with Carbon Capture and Storage,” Biofuelwatch, 2015

5. Office of Fossil Energy, “Archer Daniels Midland Company,” https://energy.gov/fe/archer-daniels-midland-company

6. ETC Group and Heinrich Böll Foundation, “Illinois Industrial CCS (former Decatur project,” Geoengineering Map, 2017, https://map.geoengineeringmonitor.org/Carbon-Cioxide-Removal/illinois-industrial-ccs-former-decatur-project/

7. Chris Mooney, “The quest to capture and store carbon – and slow climate change — just reached a new milestone,” Washington Post, 2017, https://www.washingtonpost.com/news/energy-environment/wp/2017/04/10/the-quest-to-capture-and-store-carbon-and-slow-climate-change-just-reached-a-new-milestone/

8. See Geoengineering Monitor, “Carbon Capture and Storage,” Technology Fact Sheet, April 2018.

9. ETC Group and Heinrich Böll Foundation, “Carbon Dioxide Removal,” Geoengineering Map, 2017,https://map.geoengineeringmonitor.org/Carbon-Cioxide-Removal/

10. A compilation of peer-reviewed literature is available here: http://www.biofuelwatch.org.uk/biomass-resources/resources-on-biomass/

11. Wil Burns and Simon Nicholson, “Bioenergy and carbon capture and storage (BECCS): the prospects and challenges of an emerging climate policy response,” Journal of Environmental Studies, 2017

12. Partnership for Policy Integrity, “Carbon emissions from burning biomass for energy,” 2015, http://www.pfpi.net/carbon-emissions

13. See Geoengineering Monitor, “Carbon Capture and Storage,” Technology Fact Sheet, March 2018.

14. Lydia Smith and Margaret Torn, “Ecological limits to terrestrial biological carbon removal,” Climate Change, Vol. 118, Issue 1, 2013, pp. 89-103

15. Christopher Field and Katherine Mach, 2017

16. Wil Burns and Simon Nicholson, 2017

17 Phil Williamson, “Emissions reduction: scrutinize CO2 removal methods,” Nature, Vol. 530, 2016, pp. 153–155

18. Global Forest Coalition, “The impacts of large-scale biosequestration in the context of Carbon Dioxide Removal,” 2017, http://globalforestcoalition.org/risks-of-large-scale-biosequestration/

19. Wil Burns and Simon Nicholson, 2017

The Big Bad Fix

ETC Group, BiofuelWatch and Heinrich Boell Foundation present a comprehensive argument against geoengineering in this report.

Click here to download the full report (pdf)

As a rapidly warming world manifests heat waves, floods, droughts and hurricanes, geoengineering – large-scale manipulation of the Earth’s natural systems – is being presented as a strategy to counteract, dilute or delay climate change without disrupting energy- and resource-intensive economies. Alarmingly, current debates about this big techno-fix are limited to a small group of self-proclaimed experts reproducing undemocratic worldviews and technocratic, reductionist perspectives. Developing countries, indigenous peoples, and local communities are excluded and left voiceless.

As this report details, each of the proposed geoengineering technologies threatens people and ecosystems. Holistic assessments of the technologies also show that if deployed they are highly likely to worsen rather than mitigate the impacts of global warming.

The irreversibility, risk of weaponization, and implications for global power dynamics inherent in large-scale climate geoengineering also make it an unacceptable option.

Failure of Kemper County “clean coal” plant casts more doubts on BECCS

Kemper County plant under construction. Photo: Wikipedia Commons

After years of embarrassing delays and $5.3 billion in cost overruns, Southern Company has finally pulled the plug on its pioneering “clean coal” plant in Kemper County, Mississippi.

The $7.5 billion Kemper County project would have been the world’s first Integrated Gasification Combined Cycle (IGCC) power plant with Carbon Capture and Storage (CCS). Instead, it will now run on natural gas, without carbon capture – an ironic end, given that Southern Co. could likely have built such a power plant from the outset for under $500 million.

The project’s failure should cast serious doubts on the prospects of both “clean coal” as well as Bioenergy with Carbon Capture and Storage (BECCS) – the current star child of techno-fix solutions to climate change.

BECCS would involve capturing CO2 from biofuel refineries or biomass-burning power stations and pumping it into geological formations, or – more likely due to economics – pumping it into oil wells in order to extract more oil. Despite lack of evidence as to the technological and economic viability of BECCS, the models underpinning the Paris Agreement’s 2°C target overwhelmingly rely upon BECCS as a “negative emissions technology” capable of being deployed at a scale large enough to balance out emissions by mid-century.

In theory, an IGCC power station like Kemper County should be the cleanest and most efficient way of generating electricity from burning coal or biomass. Furthermore, an IGCC plant with CCS should be less energy-intensive than a conventional power plant with CCS, because the CO2 is removed from the syngas pre-combustion – when the CO2 concentration is higher – instead of stripping it from the flue gas post-combustion when CO2 is diluted, as it is at facilities like the retrofitted Petra Nova coal plant in Texas, which was officially opened earlier this year.  

The failure of the Kemper County project, which featured the cleanest and most efficient CCS power plant technology, should therefore be seen as a warning for policy-makers expecting CCS – including BECCS – technologies to magically close the emissions gap by mid-century.

It’s important to note that exchanging biomass for coal would add even more challenges to an IGCC with CCS plant. Biomass gasification results in a syngas which is chemically quite different from that generated through coal gasification, and therefore requires different treatment in order to produce a gas clean enough for burning to power a gas turbine.

While CCS advocates will undoubtedly seek to frame it as a marginal example, the reality is that the Kemper County project is a prime example of what CCS stands for – an enormous waste of public attention and resources, at a time when society should be focused on transforming our energy systems to address the root causes of climate change.

Pulling carbon out of the air: NETS, BECCS, and CDR

ADM’s Agricultural Processing and Biofuels Plant, Decatur, IL. Credit: National Energy Technology Laboratory

Geoengineering Monitor has long reported on the speculative concept of “negative emissions”, together with certain favored approaches such as bioenergy with carbon capture and storage (BECCS) – a geoengineering technique which recent studies show would have significant negative impacts on biodiversity, food security, and livelihoods.

To get a better sense of the technologies under discussion, we sent a correspondent to a “Carbon Dioxide Removal / Negative Emissions Technologies (NETs)” workshop earlier this month, co-sponsored by fora associated with American University, University of California – Berkeley, and Arizona State University.

A primary theme of the workshop was understanding NETs in the context of the Paris Agreement. Katharine Mach, senior research scientist at Stanford University and director of the Stanford Environment Assessment Facility, opened the day by describing the “pledge, review, and revise” approach of the agreement, and singled out the key role envisioned for BECCS in the models that underpin its target to stay below 2 degrees C average global temperature rise.

Wil Burns, co-director of the Forum for Climate Engineering Assessment at American University, made the case that the agreement provides authorization for countries to use artificial carbon sinks (CDR and NETs) as part of their Paris pledges. Burns built his case off of the UN Framework Convention on Climate Change (UNFCCC)’s broad definition of mitigation, which includes not only emissions reductions, but also the enhancement of sinks.

However, insofar as they aim to deliberately increase carbon sequestration on a large scale that may affect biodiversity, all proposed artificial carbon sinks are geoengineering proposals – and therefore subject to a de facto moratorium under the UN Convention on Biological Diversity (CBD), most recently reaffirmed at the end of 2016. The CBD’s moratorium derives from the application of the precautionary principle, noting that the potential impacts of geoengineering on biodiversity and traditional livelihoods have been scarcely studied.

Ongoing discussions within the multilateral institutions will likely provide more clarity on the boundary between climate mitigation and geoengineering. But for the meantime, it appears clear that attempts to push CDR techniques through the mitigation loophole will run up against the CBD moratorium. And judging by the other panels at the Berkeley CDR / NETs workshop, that’s probably a good thing.

Outside of the lively debate on BECCS – the star child of CDR advocates – the other approaches on offer ranged from relatively mundane reflections about enhancing rocks and protecting forests, to more fantastical proposals for offshore kelp-platforms riding ocean thermals. The general feel was that of an oddball trade show, with subsequent presenters arising to pitch their particular techno-fix, all seemingly underlaid by a dark acknowledgement of the social and political realities preventing meaningful climate action.

Daniel Sanchez, a postdoc at Stanford University’s Carnegie Institution for Science, kicked off the BECCS panel with a detailed technical and economic assessment of deployment possibilities, making the case that BECCS could enable a carbon-negative power system in western North America by mid-century, given a stringent emissions cap. Interestingly, Sanchez noted that the primary value of BECCS lies in its capacity to function as an offset, and less so as a source of electricity.

This point was addressed indirectly by Daniel Babson, technology manager at the Bioenergy Technologies Office within the Department of Energy (DOE). Babson asked attendees to “imagine BECCS in a world with cheap CO2 and cheap energy,” noting that the Trump administration has upended assumptions about an inevitable national carbon price or cap leading to a more competitive position for future bioenergy deployment. Babson’s prognosis on whether BECCS could flourish without a price on carbon wasn’t particularly sunny, and he noted that the DOE was reorienting towards near-term carbon sequestration via value-added products, such as wood for use in buildings or infrastructure.

Babson also referenced another way in which the new administration is a setback for BECCS. US government funding for carbon-negative bioenergy R&D falls squarely between the Office of Fossil Energy and the Office of Energy Efficiency and Renewable Energy – both of which are reportedly on the chopping block in the Trump administration’s proposed budget. If the Trump administration is successful in dismantling these offices, Babson will not only be out of a job (as he wryly joked), but BECCS proponents will have lost a critical source of funding and research.

Tim Searchinger, a research scholar at Princeton University and senior fellow at World Resource Institute, functioned as the black sheep of the panel discussion, making the case that studies showing large bioenergy emissions reductions potential are based on double-counting emissions reductions due to plant growth, and that replacing fossil fuels with bioenergy could actually increase GHG emissions, in addition to having major impacts on biodiversity and food security.

Searchinger asserted that so-called marginal or abandoned lands proposed for bioenergy feedstocks are largely already in use by local communities, or required by ecosystems to stay healthy. Margaret Torn, co-director of the Climate and Carbon Sciences Program at Lawrence Berkeley National Laboratory, also raised questions about the ecological limits to bioenergy expansion, focusing on land and resource requirements such as nitrogen and phosphorus. Searchinger made the case that using all of the world’s current harvested biomass would only meet one fifth of the world’s energy needs in 2050, in the process displacing communities and undermining biodiversity.

The final speaker of the day was Janos Pasztor, former senior advisor on climate to the UN secretary general, and recently appointed as director of the new Carnegie Climate Geoengineering Governance Project.

Pazstor, fresh off a meeting with California governor Jerry Brown, introduced the new “C2G2” project as a response to the need for systematic governance frameworks to guide geoengineering research and potential deployment. The aim of the project, according to Pazstor, is to engage with non-governmental organizations, governments, and other groups to build a network of people who could feed into future governance mechanisms.

While building out a coherent governance framework to approach ethical, social-ecological, and technical aspects of geoengineering appears to be a promising step, Geoengineering Monitor believes that it will only be successful if the voices of women, peasant farmers, Indigenous peoples, trade unionists, and the poor have a firm seat at the technology assessment table. Otherwise, C2G2 and similar initiatives could easily end up as just a normalization exercise for geoengineering, dominated by those with a material interest in promoting technofix distractions at the expense of solutions that address the root causes of climate change and biodiversity loss.

UN to extend freeze on climate change geoengineering

Iron fertilization involves dumping iron-rich soil into the ocean. Scientists say iron-rich dirt promotes the growth of plankton, microscopic organisms that provide a food source for salmon and other sealife. (CBC/HSRC)
Geoengineering proposals include iron fertilization, involving dumping iron-rich soil into the ocean (CBC/HSRC)

Update to this article: The plenary of the COP 13 adopted the decision described below on Friday 9th December

By Ed King (Climate Home)

Draft documents suggest countries will agree to further ban on large-scale climate techno-fixes, warning risks of damage to biodiversity outweigh potential benefits

Countries should resist the urge to experiment with large scale planetary geoengineering until it’s clear what the consequences of meddling with the oceans or atmosphere may be.

That’s the nub of a decision expected to be taken at the UN’s biannual biodiversity summit taking place in Cancun, Mexico this week, emphasising a “precautionary approach” to such projects.

With greenhouse gas emissions closing in on levels that could guarantee warming of 1.5C above pre industrial levels and an El Nino-boosted 2016 likely to be the hottest year on record, some scientists are looking to emergency measures.

But the UN is sticking to a familiar line: pumping the atmosphere with tiny mirrors to deflect sunlight, boosting the uptake of CO2 in oceans by stimulating plankton growth, or burning wood and pumping the emissions underground could be a bad idea.

“We’re concerned that with any initiative regarding the use of geoengineering there needs to be an assessment,” UN biodiversity chief Braulio Ferreira de Souza Dias told Climate Home.

“These can have unforeseen results and spin-offs. If you capture carbon in the oceans, this is effective through all the food chains.”

Even national risk assessments on individual geoengineering projects would still form an “incomplete basis for global regulation” says the latest iteration of the UN draft decision, echoing previous Convention on Biological Diversity (CBD) decisions in 2010, 2012 and 2014.

“More trans-disciplinary research and sharing of knowledge among appropriate institutions is needed,” it says, citing potential impacts on ecosystems and potential ethical issues.

For instance, one study by scientists at the UK Met Office in 2013 said the release of fine particles into the northern hemisphere atmosphere could lower temperatures, but heighten drought risk in the Sahel.

Still, Bristol University academic Matt Watson – one of the UK’s top geoengineering researchers – told Climate Home there are still a “range of experiments that would not have any effect on biodiversity”.

“We are not doing a great job of protecting biodiversity now (the IPCC’s projections are truly terrifying) – how will we know if geoengineering would exacerbate (or reduce) impacts on biodiversity unless we research it?” he said in an email.

That view was echoed by Richard Darton, co-director of the Oxford Geoengineering Programme, who said controlled tests allowed under CBD rules should continue “to verify the science and engineering” but that more research was inevitable given the scale of warming

“Whilst I thoroughly agree that we can best cut anthropogenic emissions as the best way to manage climate change, the CBD will have to face the fact that it simply isn’t happening fast enough,” he said.

“Learning more about geoengineering is absolutely necessary. At the moment we have the bizarre circumstance that climate scenarios which will meet 2C assume BECCS [bioenergy with carbon capture and storage] will be applied on a very big scale – an assumption at odds with the resolution of CBD apparently.

“We simply must explore BECCS and all the other techniques to understand what (if anything) they can do for us, and what the entire earth-system and human-system impacts might be.”

The last publicised large-scale geoengineering trial took place in 2012 when a US businessman dumped tonnes of iron filings into the sea off Canada, in violation of the UN moratorium.

The aim was to suck carbon from the atmosphere by stimulating the growth of plankton which would then die and sink to the ocean floor, thus sequestering the CO2.

In 2013, leaked documents revealed Russia pushed for the UN’s climate science body to support the potential of geoengineering to lower global temperatures in its major AR5 climate report.

In the event the the Intergovernmental Panel on Climate Change (IPCC) study did cover geoengineering, warning of “numerous uncertainties, side effects and risks” of efforts to manage solar radiation.

Since then, information on other programmes has been thin. Germany is conducting indoor experiments while the UK government recently stumped up £8·3 million (US$10.5m) for research into technologies to suck carbon dioxide from the atmosphere.

Policy inertia

The UN CBD draft decision notes “very few countries” have provided “information on measures they have undertaken”.

Poor reporting and the lack of debate around the issue are a concern, said Andrew Light, a former US senior state department climate official and a professor at George Mason University, who interpreted the CBD text as a “plea” rather than a ban.

“If we are ever to have a conversation about governance we need to normalise reporting,” he told Climate Home, suggesting this would be a first step before out-of-laboratory experiments are authorised.

“We need to be looking into the full range of activities, especially when we’re talking about the need to move towards net decarbonisation by 2050 or thereafter.”

“Countries have not provided information because they are not talking about it,” said Janos Pasztor, climate advisor to outgoing UN secretary general Ban Ki-moon and head of the Carnegie Climate Geoengineering Governance Project.

“There is practically no discussion at a policy level – it’s a big gap and we need to shift the debate.”

Climate Change Policy and The Super-Hero Syndrome

Jeremy Thompson/Wikimedia Commons CC BY 2.0
Jeremy Thompson/Wikimedia Commons CC BY 2.0

by Roger Boyd (Resilience)

There is a genre of Hollywood “feel-good” disaster movie, where everything seems nearly hopeless until the end, and then suddenly, many times against all hope, the super-hero (or super-heroes) saves the day. Whether it be human heroes that blow up the Earth-killing asteroid just in the nick of time; good mutants that defeat the bad mutants just in time; bad mutants turned good mutants that destroy the stayed-bad mutants just in time; future humans and non-human allies that save the Galaxy from the Empire. Anyway, you get the general storyline. The bad people/organisms /things win for the first 95% of the movie then the good people/organisms/things win against all the odds in the last 5%.

The United Nations Climate Change bureaucracy, which tends to be full of economists, engineers and enviro-managers rather than actual climate scientists and ecologists, seems to have been watching too many of these feel-good disaster movies. Seems we need to make them watch the “feel bad” disaster movies instead, like the one where the Sun eats up the Earth, or perhaps a steady diet of the unlimited supply of zombie apocalypse movies. They need something a lot darker, where super-heroes don’t save the day. Then again, maybe they should just grow up and accept that super-heroes only exist in movies. Or maybe they should just listen to the scientists and ecologists a lot more.

The United Nation’s main super-hero is called BECCS (Bio-Energy Carbon Capture & Storage). I know, not exactly as catchy as Superman, Thor, Cat Woman, or Wolverine, but what would you expect from a bunch of climate bureaucrats? BECCS is a true super-hero. The Bad Carbon will continue spewing itself into our atmosphere for decades to come, threatening to remove the ecological basis for modern human civilization. BECCS’s friends, Energy Efficiency and Clean Power, will have held back Bad Carbon a bit, but could not stop BC in time! Then at the last minute, just before human civilization melts down, BECCS sucks up BC and deposits it deep in the Earth never to return (well at least for a few thousand years hopefully).

The problem is that BECCS is not real; it’s a bunch of hopes and a religious belief in technology wrapped together. It assumes that we can set aside about a third of the current arable land on the planet to grow energy crops, instead of food. Then we can burn all those energy crops to help power our modern civilization, and can store all of the resulting carbon dioxide (billions of tons of the stuff) underground safely for thousands of years. That’s a lot of carbon dioxide per year, needing an infrastructure equivalent to the current oil & gas industry to transport it and pump it into the ground. What tiny-scale testing of the CCS (Carbon Capture and Storage) part of BECCS that has been carried out so far could most politely be described as “deeply disappointing”.  Ignoring this, the U.N. people assume that BECCS will start riding to the rescue on a major scale within 20 years or less.

What if BECCS isn’t up to the task? Other eco-technocrats have an army of super-heroes ready to help. These eco-techies seem to be into super-hero ensemble movies – maybe we should call them “The C-Men”. If EE, CP and BECCS cant beat the deadly BC, there is always – wait for it, drum roll please… DAC!!!! (Direct Air Capture) will save the day! BECCS couldn’t suck up enough of the highly concentrated carbon dioxide at the power plant exhaust, but DAC can get enough of it after it has become highly diffuse in the air! If that doesn’t work there is EW (Enhanced Weathering: dig up truly colossal amounts of a certain type of rock, turn it into powder and spread it over the Earth), OF (Ocean Fertilization: fertilize carbon capturing organisms in the ocean), and SRaM (Solar Radiation Management: block/reflect the Sun’s energy to cool the planet).

Why do we need all these super-heroes? Because without these super-heroes we would have to accept that large-scale government intervention will be required to fundamentally change our societies to use a lot less energy. A lot like a war-style economy. A lot less belief in “free markets”, perhaps no economic growth for a while, a ton of pressure for a more equitable sharing of income and wealth, and a lot less use of fossil fuels. Not a reality that the powers-that-be want to deal with. So we get the mythical super-heroes instead.

Those that consider a Trump presidency to be a disaster do not understand that we are already in the disaster. Trump may speed up the disaster a little and is certainly more “in your face”, but he is just a symptom of a larger problem. In a way, you could say he is being a bit more truthful about his version of reality-denial. The problem is the inability of even the “progressives” among the powerful to accept the reality that the time for small measures is gone, and that drastic action is required now. In the early 1990’s, those actions may have been relatively mild. Now, they are much bigger and the longer we wait, the bigger and riskier they get. Only denial, facilitated by mythical technocratic future super-heroes, can keep us from this truth.

Responses to: The Trouble with Negative Emissions

traffic
joiseyshowaa/Flickr CC

Last month we reported on Kevin Anderson and Glen Peters’ piece in Science describing how a reliance on negative emissions to draw carbon out of the atmosphere – rather than making necessary and drastic emissions cuts now – will only lock in carbon addiction and make reaching the 2 degree target set out in the Paris Agreement impossible. Below is further exchange on this topic, with a letter in response to the article, and a response to the letter.

Authors of the pro-negative emissions letter use the analogy of throwing a life-preserver to a drowning victim, where negative emissions technologies are the life-saver, and the drowning victim the planet. The life-saver may not ultimately result in a successful rescue, but offering the life-preserver is better than not doing so. The implication being that if negative emissions technologies could help, they should be tried. Anderson and Peters counter by saying that, to use the same analogy, relying on negative emissions is the equivalent of knowingly letting someone jump into a raging torrent, and telling them that we may be able to save them with a technology that we have not yet developed.

The promise of negative emissions

Edited by Jennifer Sills (Science)

In their Perspective “The trouble with negative emissions” (14 October, p. 182), K. Anderson and G. Peters assert that negative-emissions technologies are an “unjust and high-stakes gamble.” This characterization would sideline negative-emissions technologies and remove potentially important options from the portfolio for mitigating and ameliorating climate change.

As Anderson and Peters acknowledge, the remaining carbon budget is pitifully small; at the current rate, the world will blow through 600 Gt of CO2 in 15 years. Dumping this much CO2 in the atmosphere will almost certainly result in more than 1.5°C warming. Indeed, as advocates of a 350-ppm target point out, the remaining CO2 budget could be negative.

Anderson and Peters provide no evidence that faith in negative-emissions technologies is to blame for a delay in implementing other mitigation plans or for the failure of countries to cut emissions. This failure is easily explained by the free-riding behavior of some countries (1), and taking negative-emissions technologies off the table would not make collective action any easier. Indeed, given that negative-emission technologies require financial contributions, not changes in behavior, their development and deployment may well be less vulnerable to free riding. Furthermore, we need a lot of arrows in the quiver to stand a chance of meeting the Paris targets. This was a key finding from the integrated assessment modelers (2).

Rather than dividing mitigation into competing strategies, an inclusive approach would focus on stopping climate change as fast as possible while minimizing risk to vulnerable populations and to societal stability. Negative-emission technologies are not unique in facing challenges, risks, and uncertainties. It is true that negative emissions may fall short of closing the gap, but to characterize them as a high-stakes gamble is not consistent with the facts and the plausibility of meeting the Paris goals without them.

Throwing a life-preserver to a drowning victim may not assure a successful rescue, but it is not a high-stakes gamble. Offering the life-preserver is preferable.

Response

by Kevin Anderson and Glen Peters

As we wrote in our Perspective, we agree with Lackner et al. that negative-emissions technologies should “be the subject of research, development, and potentially deployment.” We support research on the technical, environmental, social, and economic viability of negative-emissions technologies. However, we stand by our conclusion that given the breadth and depth of fundamental uncertainties associated with negative-emissions technologies (1–6), a program of timely and deep mitigation in line with 2°C budgets should assume that they will not be deployed at a large scale.

A mitigation agenda that does not rely on future large-scale application of negative-emissions technologies will require a legislative environment that delivers profound social and behavioral change by high-emitters, rapid deployment of existing low-carbon energy technologies, and urgent research and development of new promising energy technologies, including negative-emissions technologies. If negative-emissions technologies do indeed prove to be successful, then a lower temperature rise can be subsequently pursued.

Lackner et al. claim that including negative-emissions technologies in assessments does not delay other mitigation tactics. On the contrary, evidence indicates that an assumption of negative-emissions success does delay conventional mitigation. Without negative-emissions technologies, much more ambitious and far reaching mitigation is required (2).

The 2°C scenarios assessed by the IPCC that do not include negative emissions but do allow afforestation have considerably lower fossil-fuel consumption than scenarios that include negative emissions [e.g., Fig. S4 in (7)]. The “emissions gap” (8, 9) between the necessary level of mitigation to deliver on the Paris goals and the collective proposition of governments (i.e., the sum of the Intended Nationally Determined Contributions) would be much larger if negative emissions were excluded.

We stand by our claim that postulating large-scale negative emissions in the future leads to much less mitigation today. Negative emissions facilitate the appealing option (10) of exceeding tight carbon budgets and assuming that the debt will be paid back later. If we cannot pay back our carbon debt because the negative-emissions technologies do not deliver as planned, then we have saddled the vulnerable and future generations with the temperatures we seek to avoid in the Paris Agreement. To use the analogy of Lackner et al., we knowingly let someone jump into a raging torrent, telling them we may
be able to save them with a technology we have yet to develop.

References

1. M. Tavoni, R. Socolow, Clim. Change 118, 1 (2013).
2. L. Clarke et al., in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, O. Edenhofer et al., Eds. (Cambridge Univ. Press, 2014), pp. 413–510.
3. S. Fuss et al., Nat. Clim. Change 4, 850 (2014).
4. P. Smith et al., Nat. Clim. Change 6, 42 (2015).
5. P. Smith, Global Change Biol. 22, 1315 .(2016).
6. P. Williamson, Nature 530, 153 (2016).
7. G. P. Peters, Nat. Clim. Change 6, 646 (2016).
8. UNEP, “The Emissions Gap Report 2015” (United Nations Environment Programme, Nairobi, 2015).
9. J. Rogelj et al., Nature 534, 631 (2016).
10. O. Geden, Nature 521, 27 (2015).

Using forests to curb climate change threatens human rights

rainforest
Kim Seng/Flickr CC

by Fred Pearce (Thomson Reuters Foundation News)

Trees offer ways to help achieve “negative emissions”, but what does that mean for forest communities?

The 2015 Paris Agreement on climate change was a landmark the world rightly applauded. Its pledge to limit global warming to well below 2 degrees Celsius – and preferably 1.5 degrees – lays down one of humanity’s greatest challenge for the 21st century. But how to achieve it?

Climate scientists say it is almost an impossible task if we only rely on reducing emissions from our power stations, transport systems and factories.  Even ending deforestation will be insufficient. They say we will have to find ways of removing carbon dioxide from the atmosphere: “negative emissions” in the climate-change jargon.

There are many schemes for how do this using chemistry and geology, but some are wildly expensive and others are not yet feasible. The most likely current option though, is giving terrestrial plants such as trees or bioenergy crops a helping hand in photosynthesising more CO2 from the air.

Here are the four main proposals for how this could be done, and their implications – which until now have barely been considered:

1. Sink forests: The most straightforward method of removing CO2 from the atmosphere is to boost nature’s primary terrestrial carbon store, by creating giant “carbon sink” forests to permanently hold carbon in timber and soil.

To assure these forests did their job, there would have to be a programme to maintain their carbon-holding power as they age and trees die. A critical question is how permanent these carbon sinks could be in the face of inevitable climate change. They could succumb to droughts or migrating pests – potentially releasing their carbon stores into the atmosphere and turbo-charging climate change.

One huge potential drawback is that calculations to date suggest that planting enough trees to soak up and store 500 billion tonnes of CO2 before the end of the century would likely require around 10 million square kilometres of land. That is an area the size of the Sahara or the US.

2. Bioenergy forests: Rather than trying to create carbon-sink forests that hold carbon forever, an alternative is to make productive use of them, by harvesting the timber and burning it in power stations as a substitute for fossil fuels. Provided the burned trees are replaced by new ones, the CO2 emissions from burning would be neutralised by the regrowth. That’s the theory, anyhow.

Would it work in practice? The best place to look is where bioenergy is already used as a strategy for reducing CO2 emissions. The European Union already incentivises biomass burning in power plants and heating systems. Almost half of harvested timber in the EU is now used for the generation of electricity or heating.

It has led to a boom in industrial forestry. Yet, worryingly, countries that rely most on biomass for energy, such as Slovakia and Romania, have the least credible systems for ensuring that harvested trees are replaced. Without that obligation, the idea that the fuel is renewable or carbon-neutral is a sham.

“You could cut down the Amazon, turn it into a parking lot, ship the trees to Europe to replace coal, and Europe would claim a reduction in emissions,” argues Tim Searchinger of Princeton University.

The presumed carbon-neutrality of biomass forests ignores the time lag involved.  Burning trees in a power station results in the immediate mass release of their carbon in the form of CO2. But the replacement trees only soak up the equivalent amount of CO2 gradually, as they grow.

There are therefore serious questions about the sustainability and carbon credentials of bioenergy in its current form.

3. BECCS: The third proposal for turning forests into a way of generating negative emissions is, for many climate scientists the Holy Grail. It involves combining bioenergy forests with technology being developed for capturing CO2 going up the power station stack and then burying it out of harm’s way – for instance in old salt mines or abandoned oil wells. This is known as Carbon Capture and Storage.

In the complete system, known as Biomass with Carbon Capture and Storage Carbon (BECCS), carbon is captured from the air by growing trees, burned to generate energy and then buried. In theory, the more energy is generated, the more CO2 is sucked out of the air.

BECCS is a better use of land than permanent carbon-sink forests, say its advocates, because harvested trees can be replaced with new trees. And it is better than normal bioenergy because it avoids emissions from power stations. So every time the land set aside for trees is replanted, more carbon can be captured, doubling up on the negative emissions. If two growing cycles could be accomplished by the end of the century, then the amount of land needed to capture 500 billion tonnes by 2100 could be halved to maybe 5 million square kilometres.

No BECCS project is yet in operation. And while the basic technology is used on a small scale in the oil industry, the idea of doing it on a huge scale, as a continuous process that remove emissions from major power plants across the world, raises huge questions about its practicability and sustainability.

Whatever the carbon gains from negative-emissions technologies, they have to exist in a world of competing demand for – and rights to – land. And converting land into carbon-sink forests would involve a land grab on a scale never seen before: a human rights calamity, with major implications for food security and biodiversity.

Looked at from the forests, this appears neither green nor renewable. It seems like a recipe for the industrialisation of environmentalism, with vast swathes of the world’s most diverse forest ecosystems turned into barren carbon factories – and their inhabitants into, at best, factory hands.

A new approach is required. One based not on creating a vast new industry for sucking carbon from the air, but on reinstating nature’s ability to store carbon in a landscape also occupied by humans – which leads us to the last of the four current options for creating carbon sinks:

4. Natural regeneration: Properly conceived, many argue, reinstating natural ecosystems could play a huge role in negative emissions, without riding roughshod over other global priorities. The Stockholm Environment Institute recently concluded that simply allowing former natural forests and degraded forest areas to regrow could lock up some 330 billion tonnes of CO2.

There are plenty of examples already of what this could mean. Twenty-five years ago, Guatemala created the Maya Biosphere Reserve. The aim was to protect the largest remaining tropical rainforest in Central America. At the time, conservationists were angry that government officials set up a dozen zones inside the reserve where local communities could do small-scale logging.

Today that seems like a stroke of genius. The forests in the core protected areas of the reserve are rapidly being lost, as cattle ranchers invade. But the community forests, jealously guarded by locals, thrive. Their deforestation rates are only 5 percent of those in the supposedly “protected” areas. On current trends, 40 percent of the reserve will be stripped of forests by 2050, and most of what survives will be in the community-run areas.

There is a lesson here for those who seek to commandeer the world’s forests as carbon sinks. Community consent is not just vital; it is the touchstone for success.

Fred Pearce’s new report for Fern on negative emissions technologies is called Going Negative – How carbon sinks could cost the Earth.

Radical Realism About Climate Change

UniversityBlogSpot/Flickr CC by Lili Fuhr (Project Syndicate)

BERLIN – Mainstream politics, by definition, is ill equipped to imagine fundamental change. But last December in Paris, 196 governments agreed on the need to limit global warming to 1.5°C above pre-industrial levels – an objective that holds the promise of delivering precisely such a transformation. Achieving it will require overcoming serious political challenges, reflected in the fact that some are advocating solutions that will end up doing more harm than good.

One strategy that has gained a lot of momentum focuses on the need to develop large-scale technological interventions to control the global thermostat. Proponents of geo-engineering technologies argue that conventional adaptation and mitigation measures are simply not reducing emissions fast enough to prevent dangerous warming. Technologies such as “carbon capture and storage” (CCS), they argue, are necessary to limit damage and human suffering.

The Intergovernmental Panel on Climate Change seems to agree. In its fifth assessment report, it builds its scenarios for meeting the Paris climate goals around the concept of “negative emissions” – that is, the ability to suck excess carbon dioxide out of the atmosphere.

But this approach ignores serious problems with the development and deployment of geo-engineering technologies. Consider CCS, which is the process of capturing waste CO2 from large sources like fossil-fuel power plants and depositing it in, say, an underground geological formation, thereby preventing it from entering the atmosphere.

It sounds good. But what makes it economical is that it enables enhanced oil recovery. In other words, the only way to make CCS cost-effective is to use it to exacerbate the problem it is supposed to address.

The supposed savior technology – bioenergy with carbon capture and storage (BECCS) – is not much better. BECCS begins by producing large amounts of biomass from, say, fast-growing trees which naturally capture CO2; those plants are then converted into fuel via burning or refining, with the resulting carbon emissions being captured and sequestered.

But bioenergy is not carbon neutral, and the surge in European demand for biomass has led to rising food commodity prices and land grabs in developing countries. These realities helped persuade the scientists Kevin Anderson and Glen Peters recently to call carbon removal an “unjust and high-stakes gamble.”

What about other geo-engineering proposals? Solar Radiation Management (SRM) aims to control the amount of sunlight that reaches the Earth, essentially mimicking the effect of a volcano eruption. This may be achieved by pumping sulphates into the stratosphere or through “marine cloud brightening,” which would cause clouds to reflect more sunlight back into space.

But blasting sulphates into the stratosphere does not reduce CO2 concentrations; it merely delays the impact for as long as the spraying continues. Moreover, sulphate injections in the northern hemisphere could cause serious drought in the Africa’s Sahel region, owing to dramatic reductions in precipitation, while some African countries would experience more precipitation. The effect on the Asian monsoon system could be even more pronounced. In short, SRM could severely damage the livelihoods of millions of people.

If geo-engineering can’t save us, what can? In fact, there are a number of steps that can be taken right now. They would be messier and more politically challenging than geo-engineering. But they would work.

The first step would be a moratorium on new coal mines. If all currently planned coal-fired power plants are built and operated over their normal service life of 40 years, they alone would emit 240 billion tons of CO2 – more than the remaining carbon budget. If that investment were re-allocated to decentralized renewable-energy production, the benefits would be enormous.

Moreover, with only 10% of the global population responsible for almost 50% of global CO2 emissions, there is a strong case to be made for implementing strategies that target the biggest emitters. For example, it makes little sense that airlines – which actually serve just 7% of the global population – are exempt from paying fuel taxes, especially at a time when ticket prices are at an historic low.

Changes to land use are also needed. The 2009 International Assessment of Agricultural Knowledge, Science and Technology for Development charts the way to a transformed agricultural system – with benefits that extend far beyond climate policy. We must apply this knowledge around the world.

In Europe, the waste sector could make a significant contribution to a low-carbon economy. Recent research, commissioned by Zero Waste Europe, found that optimal implementation of the European Commission’s “circular economy package” waste targets could save the European Union 190 million tons of CO2 per year. That is the equivalent of the annual emissions of the Netherlands!

Available measures in the transport sector include strengthening public transportation, encouraging the use of railways for freight traffic, building bike paths, and subsidizing delivery bicycles. In Germany, intelligent action on transport could reduce the sector’s emissions by up to 95% by 2050.

Another powerful measure would be to protect and restore natural ecosystems, which could result in the storage of 220-330 gigatons of CO2 worldwide .

None of these solutions is a silver bullet; but, together, they could change the world for the better. Geo-engineering solutions are not the only alternatives. They are a response to the inability of mainstream economics and politics to address the climate challenge. Instead of trying to devise ways to maintain business as usual – an impossible and destructive goal – we must prove our ability to imagine and achieve radical change.

If we fail, we should not be surprised if, just a few years from now, the planetary thermostat is under the control of a handful of states or military and scientific interests. As world leaders convene for the 22nd United Nations Framework Convention on Climate Change to bring the Paris agreement into force, they should repudiate geo-engineering quick fixes – and demonstrate a commitment to real solutions.

With Sights Set on COP22, Group Offers Roadmap for ‘Fair Future’ in Warming World

by Nika Knight (Common Dreams)

A sustainable solution to the climate crisis will also work to alleviate poverty and seek climate justice, says Friends of the Earth Germany

“A future without climate chaos for all human beings on our planet is only possible if we don’t pin our hopes on large-scale technologies. Instead, we have to make sure that the energy and agricultural transitions are being pushed forward as fast as possible,” said Heinrich Böll Foundation president Barbara Unmüßig

An illustration from the report by Friends of the Earth Germany
An illustration from the report by Friends of the Earth Germany

At the upcoming United Nations climate conference in Morocco, negotiations for how to fulfill COP21‘s agreement to limit global warming to 1.5º Celsius must emphasize methods that will also alleviate poverty and climate injustice, rather than leaning on “questionable technologies” such as geoengineering and carbon offset, says Friends of the Earth (FOE) Germany.

“We cannot count on unproven, costly, and ecologically risky negative emission technologies to save us from climate chaos.”
—Hubert Weiger,
Friends of the Earth Germany

That’s the argument put forth in the group’s new report, “A change of course: How to build a fair future in a 1.5 degree world” (pdf, in German), published Friday alongside the German Catholic Bishops’ Organisation for Development Cooperation (MISEREOR) and the Heinrich Böll Foundation.

The climate conference will take place in Marrakech, Morocco, from November 7-18.

The report takes aim at popular so-called “negative emissions” technologies, such as geoengineering, carbon offset regimes, and bioenergy with carbon capture and storage (BECCS), arguing that leaders must pursue true sustainability instead.

“The fatal flaw of all negative emissions technology proposals is this: The hope for an atmospheric line of credit allows today’s urgent need for radical reductions in CO2 emissions to fall by the wayside,” the report argues. “What’s currently Plan B is in fact the best way to force Plan A into the background—a fundamentally different economy, one that preserves the planet for all forms of life.”

Instead of such “questionable technologies,” the report argues for policies that have poverty reduction and climate justice as their central focus.

“In reaction to the Paris Agreement, we need to phase out coal, speed up the transition to renewables, phase out combustion engines, and protect and restore forests and soils,” explained Hubert Weiger, chairman of Friends of the Earth Germany, in a statement.

“It is crystal clear that effective climate protection and equitable, sustainable development can only be considered together,” added Heinrich Böll Foundation president Barbara Unmüßig. “A future without climate chaos for all human beings on our planet is only possible if we don’t pin our hopes on large-scale technologies. Instead, we have to make sure that the energy and agricultural transitions are being pushed forward as fast as possible. Technological fixes such as geoengineering are betting on future possibilities such as sucking CO2 from the atmosphere or keeping sunlight away from the Earth. This is a dangerous distraction from the necessary steps that we can already implement today. The coming-into-force of the Paris Agreement asks for exactly this change in course.”

“As northern countries that have caused the climate catastrophe, we need to lead by example,” Weiger continued. “We cannot count on unproven, costly, and ecologically risky negative emission technologies to save us from climate chaos. If we postpone implementing the traditional climate mitigation solutions, we will miss the rapidly closing window of opportunity to limit global warming to 1.5 degrees.”

Indeed, new research has shown that the goal to limit warming to 1.5º is already a long-shot.

“The vague hope that we could all survive in a world that is 3 degrees warmer than before industrialization is deceptive,” said Pirmin Spiegel, director general of MISEREOR. “It is our responsibility to safeguard the lives of millions of people by limiting global warming to 1.5 degrees. This is not only a technological challenge; instead, it has widespread societal and cultural implications that we all have to face.”